Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Genet. mol. biol ; 32(2): 382-388, 2009. tab
Article in English | LILACS | ID: lil-513961

ABSTRACT

The wing Somatic Mutation and Recombination Test (SMART) in D. melanogaster was used to study genotoxicity of the medicinal plant Tabebuia impetiginosa. Lapachol (naphthoquinone) and β-lapachone (quinone) are the two main chemical constituents of T. impetiginosa. These compounds have several biological properties. They induce apoptosis by generating oxygen-reactive species, thereby inhibiting topoisomerases (I and II) or inducing other enzymes dependent on NAD(P)H:quinone oxidoreductase 1, thus affecting cell cycle checkpoints. The SMART was used in the standard (ST) version, which has normal levels of cytochrome P450 (CYP) enzymes, to check the direct action of this compound, and in the high bioactivation (HB) version, which has a high constitutive level of CYP enzymes, to check for indirect action in three different T. impetiginosa concentrations (10 percent, 20 percent or 40 percent w/w). It was observed that T. impetiginosa alone did not modify the spontaneous frequencies of mutant spots in either cross. The negative results observed prompted us to study this phytotherapeuticum in association with the reference mutagen doxorubicin (DXR). In co-treated series, T. impetiginosa was toxic in both crosses at higher concentration, whereas in the HB cross, it induced a considerable potentiating effect (from ~24.0 to ~95.0 percent) on DXR genotoxity. Therefore, further research is needed to determine the possible risks associated with the exposure of living organisms to this complex mixture.

2.
Genet. mol. biol ; 31(4): 947-955, Sept.-Dec. 2008. tab
Article in English | LILACS | ID: lil-501453

ABSTRACT

Panax ginseng is one of the most widely prescribed herbal medicines for the treatment of cancer, diabetes, chronic inflammation, and neurodegenerative and cardiovascular diseases. Since the use of alternative medicines in combination with conventional therapy may increase the risk of unwanted interactions, we investigated the possible genotoxicity of a water-soluble form of the dry root of P. ginseng (2.5, 5.0 or 10.0 mg/mL) and its ability to protect against the genotoxicity of doxorubicin (DOX; 0.125 mg/mL) by using the Drosophila melanogaster wing somatic mutation and recombination test (SMART) with standard and high-bioactivation crosses of flies. Panax ginseng was not genotoxic at the concentrations tested, whereas DOX-induced genotoxicity in marker-heterozygous flies resulted mainly from mitotic recombination. At low concentrations, P. ginseng had antirecombinogenic activity that was independent of the concentration of extract used. Recombination events may promote cancer, but little is known about the ability of P. ginseng to inhibit such recombination or modulate DNA repair mechanisms.


Subject(s)
Animals , Doxorubicin/toxicity , Drosophila melanogaster/genetics , Panax , Drosophila melanogaster , Phytotherapy , Plants, Medicinal , Wings, Animal
SELECTION OF CITATIONS
SEARCH DETAIL